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mapping on SAs and lead to different

designs using the dependence

method.
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0 -1 -1

-1 -1 0 1 -1 0
D5= 5 D5= s
0 1 -1 0 1 -1
-1 1 0 -1 -1 0
D, = , Dy = .
0 -1 -1 0 1 1

4.2 The Polynomial Problem
The polynomial problems is
defined iteratively as:
p,(x) = Z;=oa./ !
where x represents the points at
which the polynomial is to be
evaluated, ay, ..., a, represents the
coefficients, and n is the degree of the
polynomial.
By using Horner rule the following
is obtained:
pn(x) =aqp+ X(al + x(a2 ot X( Q.
+xa,).....))
This form can be written in the
following form:
For i:=n-1 to 0 do
p=p* x + alj]
where p is initialized to a[n]. If a
series of points x;, 0 <i < m, are
given and we wish to compute p(x;)
then we have:
For ii=1 to m do
For j:== n-1 to 0 do
plil=pli] + x[j] * a[j]
where p[1], ...... plm] are initialized
to a[n}]. The equivalent SURE is:
Fori:=1 to 3 by 1 do
For j;==2 to 0 by -1 do
Begin
plijl=plijt1txlij+1]*ali - 1,j]

11 o}
D, = ,

x[ij]=x[i+1]
alijl:= ali-14]
End;
The initial points are:
pli3]:=al3],
x[i,3]:=x[{],
a[0]:=al/]
The final results are: p[i,0]
The possible dependence matrices
(dependence vectors order is: x, a,
and p):

0 1 0
D, = ,
-1 0 -1

[0 1 0] 0 -1 0
D, = , D, = ,
St oo -1 -1 0 -1
[0 1 0]
D, =
-1 0 1]
0 -1 0]
D, = ,
10 1]

0 -1 0 010
D(): b D7: 9
-1 0 1 1 0 1
0 -1 0
D, = .
1 0 -1

5. Conclusion

This paper studied the problem of
data broadcast elimination in systolic
algorithms. A method to develop an
iteractive algorithm to a single
assignment form of recurrence
equation is presented. The resultant
SARE is with DB property that must
be eliminated. Therefore, we
presented a method for data broadcast
climination that converts SARE to
SURE, which is suitable for mapping
onto SAs. The presented method is
clear and easy to implement and
produces  different  presentation
(dependence  matrices) for the
algorithms that are suitable for direct
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Step 1: consider the function x(m;,
my) where 1 <m;, m; < 2m. The
system of linear equations can be
obtained as follows: it+j= m;, and
j+k= m,. This is a system of two
equations in three variables (n=3 ).
Step 2.2: since k is the last index, the
equation k= m3, 1 <mj3 <m, is added
to the system. Then this system is
solved by Gauss elimination method
to yield the first point as p,=[m;-
matms, mym; m;] — and simply
replace m; by mj+1 to obtain the
second point as p,=[m-my+mst1l, my-
m;s -1, myt1] ",
Step 3: the obtained propagation
vector r=p,-p,=[1 -1 17"
Step 4: the following RE is obtained
according to r:
x(ij,k)=x(i-1j+1,k-1).  Thus, the
function in the original equation is
replaced with x(i-1,/+1,k-1).
Step 5: the following
conditions are satisfied:
x(0,,6):=x(jj+k),
X0 0): =),
x(i,m+1,k)=x(i+tm+1,m+1+k).
From these steps, we obtain the
equivalent SURE as follows:
v, j, k):=f(....., x(i-1 j+Lk-1), .....),
x(i, j, k):=x(i+1j+1.k-1),
I <i,j<m
with the initial conditions:
(0, j, k) = x(, j*k),
x(i, J, 0)= x(i4, J),
x(i, m+1, k)=x(i+m+1, m+1+k).

initial

4. Applications

In our experimental work, two
problems are  considered, the
convolution and the polynomial
problems which are widely used in
image processing applications. SURE
for both problems are shown

49

considering that (n=5 and &=3) for the
convolution problem and (n=2 and
m=3) for the polynomial problem
respectively. The possible
dependence  matrices for both
problems are also shown.

4.1 The Convolution Problem

The convolution problem is
defined iteratively by:
y, = “ wox 1<i<n—-k+1,n2k

et i i
and its single assignment form is as
follows:

For i:=1 to n-kt1 do

For j:=1 to k do
ylil=ylid + wijl * xli +j-1]

where y[1],... , y[n-k+l] are
initialized to zero. The equivalent
SURE is:

Fori:=1 to 3 by 1 do
For j=1to 3 by 1 do
Begin
yligl=plij-11+wli-1,7]

1,j+1]
wlij]=wli-1,/]
x[ij]:= x[i-1,7+1]

End;

The initial points are:

y[,0]:=0 ,

wl0,/]=w[j] ,

x[0y+1]:=x[/],

x[i-1,4]:=x[i+2]

The final results are: y[i,3]
The possible dependence matrices

are (dependence vectors order is: w,

x, and y):

*x[i -
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applying two consecutive values for
the missing index as follows:

Step 2.1: In case of (n-1) equations
in n-1 variables, this system can be
solved to give the values of the (n-1)
variables, which do not depend on the
value of the missing index (i.e., has
zero column in matrix A4). So these
values are the same in the two
consecutive points resulted from
applying two consecutive values for
the missing index.

Step 2.2: In casc of (n-1) equations in
n variables, this system cannot be
solved until an equation, which is
constructed from the missing last
index and a hypothetical constant,
which should be in the range of the
last index, 1is added. This new
equation becomes the ™ equation in
the system, which gives a value for
the last index.

Step 3: Compute the dependence (or
propagation) vector, which is the
difference vector between the two
consecutive points.

Step 4: Add new recurrence equation
to the SRE according to the obtained
propagation vector.

Step 5: Determine the initial
conditions of the SRE, i.e., the value
of each function in its initial points by
substituting the points that include
lower bound-1 as a value for the
index propagated by negative value
or upper bound+1l for the index
propagated with positive value in the
original SRE.

Now we consider some examples
of functions with DB to explain how
our mecthod is applied to these
functions converting the broadcasting
into propagation.
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Example 4: Consider the following
SRE:
x(1,)):= A..., b(jj-1), ...), 1
m
We apply the previous method on this
system as follows:
Step 1: consider the function
b(m;m;) where | <m;, <m,1 <
m; < m-1. the system of linear
equations can be obtained as follows:
j=m, and j-1=m; yields that j=m,+1=
m;. This is a system of one equation
in two variables (n=2).
Step 2.1: since i is the missing index,
then we let i=m, and i=my+1,1 <m,<
m, to get the following two
consecutive points: p,=[m,, m ;1" and
pr=lma+1, m]".
Step 3: the obtained propagation
vector r=p,-p;/=[ 1 01"
Step 4: the following RE is obtained
according to r: b(i,j):=b(i-1). Thus
the function in original equation can
be replaced with b(i-1,)).
Step 5: the following initial condition
is satisfied:

b(0,)):=b(j j-1).

Therefore, the equivalent SURE
obtained from DB elimination
method is:

x(i))=A....., b(i-1)), .....),
| <i,j <m
blij):=b(i-1,j)
With the initial condition :
b(0,/)=b(jj-1).

<ij<

Example 5: Consider the following
SRE:
Vi k)= x(i4), j+k), ...,

| <ijk<m.
The mcthod is applied on this system
as follows:
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then pipelining the respltant (non-
systolic) architecture by a technique
called data pipelining which enables
to derive SAs from SARE.

-Although this approach does not
requires any modification on the
algorithm to be mapped onto SAs. It
requires very complicated
mathematical treatments to perform
such mapping.

The other approach points out the
DB problem in SARE and tries to
find a method to eliminate such
problem by converting SARE to an
equivalent SURE. Gusev and Tasic
[21] have followed this approach.
They define the dependence vector
d=p-q between two index points p
and g as d=A*p+b where A is NxN
constant matrix and b is n-
dimensional  vector. They did
additional replacement, evaluating ¢
= p-d = p-A*p-B = (I-A)p-b and
achieve g=B*p-b where B=(I-A) is
NxN  matrix of linear index
dependence and 7/ is NxN identity
matrix. They analyzed the function
J{(g) that is broadcasted to more than
one index point p. This dictates the
conditions g=const. Since ¢g=B*p-
b=const, it follows that
B*p=b+g=const. So they addressed
B*p=r as a system of linear equations
upon the vector p and the matrix B is
with rank less than n, where r is the
propagation vector according to
which a new recurrence will be added
to SARE  transforming  the
broadcasting into propagation.

However, they did not point out
how the system B*p=r can be solved
to get the vector r. We follow the idea
of second approach and propose
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method that is easy to implement and
to construct.

3.3.1 The Proposed Elimination
Method

The basic idea for data broadcast
elimination method depends on the
definition of SARE. In this definition
the indices of the function is given by
Ap+b which means that each index of
p 1s changing according to a linear
equation and the function is used in
the points along the line of missing
index, that we call the broadcasting
line; i.e., The function is broadcasted
to all points along this line. The space
of index point is of integer
coordinates with equal space, so
finding the relation between two
consecutive points on the broadcast
line (as a dependence vector which is
also called propagation vector) is the
same as that between the others on
the same line. Then we change the
broadcasting into propagation, see
Fig. 2 (c). Therefore, different
algorithm presentations (dependence
matrices) can be obtained by negating
the propagation vector of each
function separately, of every two
functions together, and all functions
together. The synthesis steps of stage
two are applied for each dependence
matrix that may result different
systolic designs.

we can describe the elimination
method as follows:
Step 1: Determine the system of
linear equation for the proposed value
of the broadcast function. This
system is of n-1 equations in either n-
1 variables or n variables.
Step 2: Determine two consecutive
points on the broadcast line by
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ongoing manner without returning the
intermediate values to the main
memory. Thus, economy of storage is
of minor importance for our
purposes. Indeed, it is the structure of
the relationships in the algorithm,
which is central. Hence we need to
distinguish between distinct uses of
the same symbol.

Definition 9: A single assignment
form is a form where every value of
the computed functions is calculated
only once during the execution of the
algorithm.

Transforming an iterative form
into single assignment form is done
by introducing counter values and
changing the Equation (1) in the
following recursive form:

fi) =fip”) * arguments ..... (2)
where:
p'=[pLps ....5]

"=[pn P2 -, S-i]

Practically this processing expands
the index point by a parameter
labeled with s, expressing the counter
values. Adding the counter as a new
parameter, the index space of the
function is expanded and for each
index point one function value is
calculated. Therefore, a single
assignment form of Equation 2 is
obtained. New data dependence is
introduced according to the resulting
single  assignment form. This
dependence presents the propagation
of the output value from one
recurrence to anoiner that has the
following dependence vector:
d=p-p”

=[pn P2 - veny S-Ig]

’ S] - [pl: P2
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=10,0, ..., i].
Such d is always constant. This
actually what we need for our systolic
implementation.

After this processing for the
iterative algorithm, if all -of resultant
REs are with DB then the DB
elimination technique is applied for
these functions. Otherwise, if there is
one (or more) function with full index
form and matrix A is not rank
deficient then the system is stopped
deciding that the input algorithm is
/O bound problem which is not
suitable for systolic implementation

[1].

3.3 Data Broadcast Elimination

Most work on the problem of
synthesizing an SA from SREs is
restricted to SURE. In this section,
this restriction is relaxed to include
SARE with data broadcast property.
A method is presented to eliminate
the data broadcast converting the
SARE to an equivalent SURE.

There are two approaches to
handle SARE. One approach maps
SARE directly to SAs without a need
to determine explicitly the DB
problem. Yaacoby and Cappello [20]
have applied this approach and gave
sufficient conditions for SARE to be
computable.  Also, they gave
necessary and sufficient conditions
for existence of an affined schedule,
along with a procedure that constructs
the schedule vector, when one exists.
Moreover, Rajopadhye and Fujimoto
[19] have presented a technique for
synthesizing systolic architectures
foorm SARE by first determining
timing and allocation functions and
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Theorem 3: An algorithm with a
function which is not defined by a
full index form or defined with a full
index from having two indices that
depend on the same parameter can be
expressed by a recurrence equation
with affine data dependence.

- Proof: Consider the following RE:

fo)y=g(... f{BP), [y, -..)

Let q’:ﬂ/(p)z[pl» P2 - DPs 0:ps+l: ey
pal and ¢ =yp)=[p;, P2 .-, Ps, -\Dk-
I Pk DPk+l, - Pul]- q° and g’ are
linearly depending on p, this is
because q =A*ptb, and
q’'=A,*p+b,, such that 4, and A,
differ from the identity matrix, where
A; and A4, respectively are:

't o .. 0 0 0 .. O]
01 .. 00 0 ... 0
0 0 0
0 0 0 0
0 1
0 0 0 0 0 1]
1 0 0 000 .. 0]
0 1 .0 0 0
00 1 .. 000 0
0 1 00
000
0 ... 00
00 .0 ..00 0 .. 1]

From Theorem 2 and Theorem 3
we obtain that an algorithm with
functions not expressed in full index
form is in AREs with DB property.

45

3.2 Algorithm Transformation

All algorithms which are iterative,
are suitable for parallel
implementation, but we want to
transform such algorithms in another
form that permits an efficient
mapping to VLSI architectures. In
case of SAs, recurrence equations are
the most adjustable forms.

The programmer heuristically
writes his programs in an iterative
form. This form is given by the
following equation:

Forp,=L,;to U,byl, do

Forp,=L, toU,byl, do

Forp,=L;to U; by do
Sp) = flp) * arguments

where

e fis the function to be computed

e *is an arithmetic (logic) operation

e arguments are input data that are
processed during the iteration.

The acceptable algorithm to our
synthesizer must be presented in an
iterative form which is the starting
point for the synthesizer work.

(D)

3.2.1 Single Assignment Form

In writing programs, it is common
to use the same symbol to represent
several distinct quantities each of
which stands for some intermediate
results which is gradually replaced by
more complete results. One reason
for this practice is to reduce storage
requirements. Inevitably, such a
practice  obscures the  natural
relationships that exist among the
parts of the algorithm.

In the case of systolic algorithm in
mind, the results are developed in an
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3. Data Broadcast Problem

Data broadcasting occurs in SARE
in the situation where one value of a
considered function is used as a
parameter for the computation of
more than one function. It is also
identified as a data transfer one to
many, 1.e., one data is broadcasted to
many computations. Fig. 2(a) shows a
broadcast function. Also “many to
one” identified another type of DB;
see Fig 2(b), which is not of our
consideration.

Odd ooo

(3 0ne to many DB (by Many to one DB

—_ ]

(€ Propagation

Fig. 2 Data Broadcasting

Lemma 1 [21]: Data broadcast in a
SARE exists if there are at least two
different index points in the domain
of the system such that:
(Ipnprel;p # pr)and (f{A*
p;+ b) = f(A* p, +b)) or rank A is
less than .

Proof: Suppose that the computation
of f for p, requires the function fg),
but Ap;+b=Ap,+b=A so flq) is used
again when computing f for p,. This
means that the function flg) is
broadcasted for two computations p,
and p,. The second condition is valid
because A(p;-p;)=0 and p, # p,,
therefore rank A is less than ».

DB cannot be implemented on
processor arrays because of the
requirements of VLSI technology for
local interconnection and
communication. Therefore, the
solution of data broadcast elimination
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problem has great potential. Section
3.3.1 suggests a method to eliminate
data broadcast in SARE converting it
into SURE.

3.1 Functions with data
Broadcasting
If a function in a RE is not

expressed in full index form then the
output from the function 6, is a

vector with dimension smaller than
n. Let g=5,(p)=lq,, q> ..., q,]. Define
the function I'; Z" — Z"! which is
given by: Ty(p) =[q/. g2 -, G5t G110
..., ¢,]. Notice two index points p,
and p; that always exist such that p,; #
p2, and Ii(p,)=I'y(p;). So, the next
theorem is valid.

Theorem 2 [21]: Function Ij: Z" —»
Z"" in a recurrence equation defines a
data broadcast.

The index space of the function not
defined by full index form can be
fulfilled by an identity mapping for
existing indices and filling the
missing indices by zero to obtain the
index point ¢’. Define the function
B:Z'—= Z' and given by B (¢)=¢’
such that: ¢,=0 and ¢ =¢;,1 <i <
n and i #s.

The above shows one class of the
broadcast functions. The other class
is the function defined in full index
form, but there are two indices in this
form depending on the same
parameter in p. Define the function
y: Z' = Z', which is given by: y(p)
=lq5, g2 ..., Qs - ..., ¢,] such that
qs=q; . It easy to see that Theorem 2
can be extend to include the function
i that defines data broadcast.
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interconnections and the links have a
constant delay (again independent of
location in the array). Thus if we
imagine a °‘snapshots’ taken every
time instant as the computation
progress, we get a three-dimensional
dependency structure in a space time
domain. Any point, p=[x, y, t] in the
domain represents the computation
that processor [x, y] performs at time
instant ¢. Since the architecture is
systolic, the point g=[x’, y’, ¢’] that
the computation performed by the
processor [x, y] at time t dependence
on, can only be displaced by a
constant in t-axis (because of constant
delays), and by a small constant in
the x-y plane (because of nearest-
neighbor interconnections). Thus the
dependencies are uniform, and the
computation can be described by a
SURE.

2.5 Affine Recurrence Equations

From Example 2, one can say that
presenting an algoritim as SURE is
not a commoning used way, and this
way of presentation may be difficult
to those who are not familiar with
recurrence equations. A large number
of interesting problems cannot
naturally be expressed as SURE.

Also based on Theorem 1 it is
clear that UREs are too close to the
target implementation of SAs rather it
is useful high level specification.
UREs are more suitable as
intermediate representation of the
problem after specifying the problem
by another form. A more general
class of REs is the AREs whereas the
name suggests, the dependencies are
affine function of the point [19].
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Definition 8: An SRE as given in
Definition 4 is said to be a SARE iff
5:'/. (p)= Aij +p+ bi, ’

forl<i =m, 1 5§ <k
where 4, is NxN constant matrix .

AREs are the superset of UREs, so
if each 4, is the identity matrix then

the system i1s SURE. In general, the
SAREs raise the data broadcast
problem that should be eliminated for
efficient systolic implementation.

Example 3: A more appropriate
specification for matrix multiplication
would be the following SRE:

wlij, kl:=w[ij k-1]+x[i,k,01*y[k,,0]
with the initial conditions

w[i,j,0]: =0,

x[i,k,0]: =x[i,k]',

ylkj,01: =ylkj].

From Definition 8 we can obtain the
following:

1 00 0
A =101 0|,b={0|,
0 0 1 -1
1 0 0] 0
A4,=|0 0 1|,b, =|0],
10 0 0] 0
[0 0 1] 0
A, = 1 0{,b,=|0
0 0 0] 0

where A; and b, are associated with
w, A, and b, are associated with x, A3
and b; are associated with y. Since 4;
and A; are differing from the identity
matrix, and the above SRE is affined.
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function that denotes any significant
computation while the others merely
being auxiliary functions, and also
there is one dependence vector for
each function. The definition of each
system is given in [18] as follows:

Definition 7: A SURE over the
domain I" is defined by:
£1(p)y=g(£,(ptb1),£2(ptb2),....£x(p+
by))

£2(p) =£Ap+b;)

£4(p) =£u(p+by)
The dependence matrix of this system
is as follows:

Dz[dl, dz,..., dk]
where d1=-b1, dgz-bg
b, and d; 1s the dependence vector
associated with the function f;.

In spite of such restricted system,
many interesting problems (typically
numerical and matrix computations)
can be expressed as such recurrences.
The next example shows a SURE for
matrix multiplication problem
W oin=Xpxn* Yuxn  Which 1s  defined
iteratively as:

_ n % . .
Wi -Zk=1xik Vi, 1 i, j =n

Example 2: The following SURE, is
defined over the domain:

P={Gijk): 1 <i, j k <n }, computes
the matrix W, that result from
multiplying matrix X,., by matrix
Vaxn as follows:

wlij kl:=wlijk-1]+x[ij-1,k]*y[i-
1,/,k]
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x[ij.k)l=x[ij-1,k]
ylijKl:=yli -1.K]
The initial conditions are:
wli,j,0]:=0,
x[8,0,k]:=x[i k],
y[0,.k]:=ylk/]
and the final results are:
wlij,n]
This SURE can completely be
described by < F, D> where I is
defined above and D is as follows:
1 00

D=ld, d, d,] =|0 1 0
00 1

where d;, d,, and d; are associated
with y, x, and w respectively.

For SURE, the data dependence
method can be efficiently used for
mapping algorithms onto SAs.
However, the following theorem
shows the relation between the actual
work of SAs and SURE. Whereas the
aim of this paper is the reverse of this
theorem.

Theorem 1 [19]: For any SA, there
exits a SURE that computes exactly
the same function as the SA.

Proof: consider a processor in
physical two-dimensional SA. The
local memory of an individual
processor in an SA can be viewed as
a set of shift registers. Some of these
can be directly viewed as (finite)
delay on the communication lines,
and the remaining (which correspond
to values that are actually update
during each cycle) can also be viewed
as shift registers that connect the
processor to itself. Each processor as
such, independent of its location in
the array, has nearest neighbor
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in another index point then there is a
data dependency between theses two
index points which can be described
by the data dependence vector d (the
difference between the two index
points). The dependence vectors of
algorithm  actually  dictate its
communication requirements.

Definition 5: d is said to be a
dependence vector for a function f
when the following holds if
fip)=g(...flq)....) then d=p-q. The
matrix D=[d,, d>. ..., d] ( =1) of all
dependence vectors is called the

dependence matrix.

Recall the SRE in Example 1,
there are some data dependences
between the functions available in
this system. For example,
b(4.2)=a(5,2)*b(6,1)+b(4,1). The
following dependence vectors can
describe these dependences:
d;=(-1 1)T for pair < a(i, j), a(i+1, j-
1>
d=(-1 0)" for pair < b(i, j), a(i+1, j)>
d=(-2 1)" for pair < b(i, ), b(i+2, j-
1y>
d,=(0 1)" for pair < b(i, j), b(i, j-1)>
With these dependence vectors we
form the dependence matrix D (the
order of columns is not important)

-1 -1 -2 0
0 1 1

D=[d, d-d; (l4]={ |

For this algorithm all four
dependence vectors exist in almost
every index point of the index set.
The dcpendence  vector  dp  is
associated with function a, whereas
the rest vectors are associated with
function h. Notice that the pair of
points that generate a dependence
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vector may be obtained either from a
function generated and used in a
single equation, or from a function
generated in one equation and used in
other different equations. Therefore,
one function may have more than one
dependence vector.

2.4 Uniform Recurrence Equations

URESs define a computation where
the dependencies can completely be
described by a finite number of
constant vectors, regardless of the
size of the domain. The algorithm
presented as SURE is modeled as </",
D> where I" is a lattice with nodes
representing computations and the
dependence vectors in D representing
edges that connect these
computations. The SRE in Example 1
is uniform. Each node of computation
takes a unit execution time. The
lattice is mapped onto a space-time
domain, the time and space
coordinates of each node indicate
when and where in the array to
perform the computation. This
modeling of the problem is powerful
for mapping regular computation
onto a regular layout of simple cells
[22]. The definition of SURE 1is as
follows:

Definition 6: An SRE as given by
Definition.4 is called system of URE

(SURE) iff

8 (p)=p+h, ,for 1<i<m, 15 <
k

where b, ‘'s are constant n-

i

dimensional vectors.

Our work is restricted to the case
where in SURE there is only one



Algorithm Transformation and Data Broadcast Elimination for Systolic Implementation

initial conditions of the SRE.

Therefore, L" N I" =¢.

Definition 4: The SRE over the
domain I" is defined by m mutual
equations as [19, 20, 21]:

f;(p) = gf(.fi, (5,'1 (p))> fi2 (5,'2 (p))7 Tt
/i, 6, (p))

forI<i<m k>1, pel

where:

e The functions f}, 15, ..., f., (r 2 m)
are real valued functions with
domain I" U L":

fi: I'UL" > R, where R is
the set of realsand 1< A <r

e The notation f;, denotes the i

parameter for calculating the /™
function in the system where:

i e{l2,..,r}

/

e The sign := means that the
function f; is being calculated and
gets the value of the function g;.

e The function g; is a real valued
function defined as:

g:R* = R for i =I

* The functiond, are integer vector

valued with domain I" | i.e.,

6, : I'-rwovl,

for 1<i=m, 1 55 <k
Notice that there are two types of
functions in the SRE, ie., the
calculated and the input functions.
The SRE is defined by m REs that
compute the value of the calculated
functions f, f5, ..., f, . The functions
Jmets fm+2 ..., fr that are used for
calculating the SRE are called input
functions. Also, notice that the initial
conditions for SRE must be
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determined i.e., the value of the
function that may be used in a point
outside the index set.

The equations in Example 1 below
are an example of a SRE and they are
used to illustrate some of the previous
definitions.

Example 1: consider the following

equations:

a(i, jy:=a(i+1,j-1)

b(i, j):=a(i+ 1)) *b(i+2,j-1)+b(ij-1)
for 1<i <n-2, 1 55 <n-1

Thus we have:

e The index points:

p=lijl, 1<i =n-2,1 5 <n-1.

The initial points:
L*={(i, 0). (n-1,j), and (n, ),

I<i <n-2,1 55 <n-1}.

e This SRE is defined by two
recurrence equations (m=2), and
a, and b corresponds to the
functions f; and f, of Definition 4
respectively.

e The functions g,, g, are defined as
follows:

e g R — R, where
given by: g;(x)=x,

g R - R, where k=3, and
given by: g-(x, y, w)=x*y+w
* The functions 4,5, .6, ,d, are

given as follows:

k=1, and

5, (i, j) = (i+1, j-1),
8, (i) = (i+1,)),
8,,(ij) = (i+2,j-1),
8,, (i) = (i, j-1).

2.3 Data Dependence in System of
Recurrence Equations

If a data item generated
(calculated) in one index point is used
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converts SARE to SURE that can be
efficiently mapped onto SAs using
the data dependence method.

The rest of this paper is organized
as follows: In section 2 we present a
method to transform an iterative
algorithm to a System of Recurrence
Equations (SRE). Section 3 illustrates
the DB problem and presents a
method for DB elimination. In
Section 4 we apply the proposed
method on two applications. Section
5 concludes the results.

2. Algorithm Transformation
2.1 Recurrence Equations

REs have been well known to
mathematician for expressing a large
class of functions over the domain
McZ where Z is the set of integers.
The RE specifies f, at the point ne M
in terms of f at other points in the
domain.

Definition 1: An equation that relates
a number @, in a sequence a,, a,, ...,
a, ... to some of its predecessors is
called recurrence equation. A
recurrence of the form:
fn)=a,=c;a, ;tc,a,t ... te.a,.,
is called a linear RE with constant
coefficients if all the ¢;’s are constant,
for1<i<rr>1.

Consider for example the well-
known factorial and fibonacci

functions that are defined
respectively as follows:

1 ifn=0
f(n)—{n*f(n—l) i£1>0

and

0 ifn=0
f(n)=41 ifn=1

fn=D+ f(n=2) ifn>1
Of these two examples, the second
imposes a linear RE, while the first
does not.

However, our primary concern is
in solving RE, i.e., addressing the
following problem: Given a RE
describing a, in terms of some a’s,
determine a closed-form expression
for a,, i.e., an expression for a, that
does not involves any a terms [19].

2.2 Algorithm Presentation as SRE

Our objective here 1s somehow
different from the previous definition
of REs. We are interested in using the
recurrences as an algorithm for
computing the function, and in
implementing it on a systolic
architecture.

We therefore make some definition
considering SRE 1s defined for some
points in the n-dimensional Euclidean
space as index points and the domain
of the SRE as index set as defined
below.

Definition 2: Each point in the
domain of SRE is called index point,
denoted by p, and defined by:

p=lp1. p2 o pal'
where p; € Z, 1<i1<n.

Definition 3: The nonempty set I" C
Z" of all index points belonging to the
domain of the SRE is an index set of
the RE.

Remark: We denote by L" < Z" the
set of all index points that define the
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Systolic algorithms exhibit some
features that make them suitable for
direct hardware implementations.
They are highly parallel/pipelined
algorithms, specified on the basis of
simple operations, with a high degree
of homogeneity in operation and
regularity in communication. The
early systolic algorithms were
obtained, probably, in a heuristic
way. They are oriented to matrix
problems (matrix multiplication, LU-
decomposition, etc). Later, automatic
methodology to design systolic
algorithms has been proposed. The
benefits of a design methodology are
saving in design time, correctness of
designs and the possibility of
obtaining several solutions and
choosing the best one according to
given criterion [13]. In fact,
algorithms represented with nested
loops [14, 15] or recurrences [16] are
preferable with such methodologies.

The main concern in algorithm
development for systolic
implementation is  the  local
communication between PEs in the
array so that the share common bus
should be avoided by increasing the
processing speed, and the access to
memory becomes very slow in
comparison to processing speed.
Therefore, these constraints modify
the approaches in parallel algorithm
designs. Data Broadcasting (DB)
which may exist in many algorithms,
means one data item (input or
computed) is used in many
computations. This can be realized
only by'a share common bus and by a
global memory access. Therefore, the
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data broadcast elimination problem is
of great interest [17].

Data dependence -method [14, 13]
is one of the famous techniques used
for mapping algorithms onto SAs.
This method accepts an algorithm
with constant data dependence.
Informally, an algorithm, which is
suitable to be applied for data
dependence method, is represented as
a partially ordered subset of a
multidimensional  integer lattice
(called index set). The points of the
lattice correspond to (i.e., they are the
indices of) computations, and the
partial order reflects the dependencics
between them. These dependencies
are represented as vectors that
connect points of the lattice. If a
given dependence vector (precedence
vector) between any two-lattice
points is  constant, then the
dependence is said to be uniform. If
all dependence vectors are uniform
then the algorithm is said to be a
uniform dependence algorithm.

A definition of such algorithm as a
class of Recurrence Equations (REs)
called System of Uniform Recurrence
Equations (SURE), which is proposed
by Quinton [18]. This form of
presenting an algorithm is not the
common one, so we first present a
method to develop an iterative
algorithm (which is usually used by

programmers when coding their
programs) to a single assignment
form of REs. The resultant

recutrences form a System of Affine
Recurrence Equations (SARE), a
more general class of REs, with DB
property. Then a method for DB
elimination is proposed which
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Abstract
The problem of synthesizing systolic arrays from a high level specification of an iterative
algorithm is concerned. A method to develop the iterative algorithm to the single assignment form
of recurrence equations, and a method for data broadcast elimination are presented. The
resultant recurrences are with constant dependencies and can be mapped directly onto systolic
array using the dependence method producing different designs.

Keywords: Systolic Arrays, Data
Broadcasting, Recurrence Equations.

1. Introduction

Systolic Arrays (SAs) are first
proposed by H.T. Kung [I] as an
excellent matching to the criteria
concerning the design of special-
purpose VLSI systems. The systolic
system consists of a set of simple
interconnected cells of few types that
move data in a regular fashion. An
array structure for such a system
provides simple, regular and local
communication paths between cells.
Information in SA flows between
cells in a pipelined fashion, and
communication with outside world
occurs only at the boundary cells.

The basic principle of SA
approach —in comparison with the
traditional architecture of a computer
system — is that the single processing
unit is replaced by an array of
Processing Elements (PEs) each
capable of doing simple operations. A
much higher computation throughput

can be achieved without having to
increase memory bandwidth, see Fig.
1. Thus focus of SA researchers is to
make sure that once a data item is
brought out from memory, it will be
effectively used many times while
traveling along the SA. SAs are not
always linear; they can be two-
dimensional, rectangular, triangular
or hexagonal to make use of higher
degree of parallelism. SAs can be
effectively used in many applications
such as digital signal and image
processing [1, 2, 3], matrix arithmetic
(4, 5, 6, 7, 8], neural networks [9],
dynamic programming [1, 10], string
comparison [11], and graph problems
[12].

II
CPU

Traditional computer

Systolic Array

Fig. 1 Traditional Computer and
Systolic Architectures
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